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Cluster distributions of a simple cubic lat-
tice of side six were examined as a function
of bond breaking probability, pbreak . Evidence
of reducibility and thermal scaling was found,
suggesting that they are fundamental features
rather than epiphenomena of complex systems.
Reducibility indicates that for each bin in

pbreak the cluster multiplicities, N , are dis-
tributed according to a binomial or Poissonian
law. Their multiplicity distributions, PN , can be
reduced to a one-cluster production probability p,
according to the binomial or Poissonian law:

PM

N
=

M !

M !(M �N)!
pN(1� p)M�N ;

PN = e�hNi 1

N !
hNiN ; (1)

where M is the total number of trials.
The ratio of the variance to the mean,

�2
A
= hNAi, of the multiplicity distribution for

each cluster of size A is an indicator of the nature
of the distribution. The observed ratio is near
one (Poissonian limit) for all pbreak. See Fig. 1.
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Figure 1: Ratio of the variance to the mean num-
ber of clusters of size A versus pbreak ; location of
the critical point shown by vertical dashed line.

Thermal scaling refers to the feature that p be-
haves with temperature T as a Boltzmann factor:
p / exp(�B=T ). A plot of ln p vs. 1=T (Arrhe-
nius plot) will be linear if p is a Boltzmann factor
with B as the one-cluster production barrier.
Thermal scaling was observed as a Boltzmann

factor when ln hnAi was plotted as a function of
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Figure 2: Normalized average cluster multiplic-
ity versus 1=pbreak for clusters of size A. Solid
lines show Arrhenius �ts.

1=pbreak; here the common practice of replacing
T with pbreak was followed. See Fig. 2. Arrhenius
plots for individual clusters of size A are linear
over several orders of magnitude.
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Figure 3: The power law relationship between
the Arrhenius barrier, B, and the cluster size A.

Interpreting the Boltzmann factor in the terms
of the Fisher Droplet Model yields a power law
relating B to the size of a cluster: B = c0A

�.
Fitting the extracted barriers B as a function
of A gave an exponent equal to 0:42 � 0:02 in
agreement with � = 0:45 for 3D percolation. See
Fig. 3.


